15d-prostaglandin J2 protects brain from ischemia-reperfusion injury.

نویسندگان

  • Teng-Nan Lin
  • Wai-Mui Cheung
  • Jui-Sheng Wu
  • Jean-Ju Chen
  • Heng Lin
  • Jin-Jer Chen
  • Jun-Yang Liou
  • Song-Kun Shyue
  • Kenneth K Wu
چکیده

OBJECTIVE Brain expresses abundant lipocalin-type prostaglandin (PG) D2 (PGD2) synthase but the role of PGD2 and its metabolite, 15-deoxy-Delta(12,14) PGJ2 (15d-PGJ2) in brain protection is unclear. The aim of this study is to assess the effect of 15d-PGJ2 on neuroprotection. METHODS AND RESULTS Adenoviral transfer of cyclooxygenase-1 (Adv-COX-1) was used to amplify the production of 15d-PGJ2 in ischemic cortex in a rat focal infarction model. Cortical 15d-PGJ2 in Adv-COX-1-treated rats was increased by 3-fold over control, which was correlated with reduced infarct volume and activated caspase 3, and increased peroxisome proliferator activated receptor-gamma (PPARgamma) and heme oxygenase-1 (HO-1). Intraventricular infusion of 15d-PGJ2 resulted in reduction of infarct volume, which was abrogated by a PPARgamma inhibitor. Rosiglitazone infusion had a similar effect. 15d-PGJ2 and rosiglitazone at low concentrations suppressed H2O2-induced rat or human neuronal apoptosis and necrosis and induced PPARgamma and HO-1 expression. The anti-apoptotic effect was abrogated by PPARgamma inhibition. CONCLUSIONS 15d-PGJ2 suppressed ischemic brain infarction and neuronal apoptosis and necrosis in a PPARgamma dependent manner. 15d-PGJ2 may play a role in controlling acute brain damage induced by ischemia-reperfusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Peroxisome Proliferator-Activated Receptor-γ Agonist 15d-Prostaglandin J2 Mediates Neuronal Autophagy after Cerebral Ischemia-Reperfusion Injury

Peroxisome proliferator-activated receptor-γ (PPAR-γ) has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R) injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ(2) on neuronal autophagy...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...

متن کامل

Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice

Objective(s): Morphine dependence (MD) potently protects heart against ischemia reperfusion (IR) injury through specific signaling mechanisms, which are different from the pathways involved in acute morphine treatment or classical preconditioning. Since opioid receptor density changes post cerebral ischemia strongly correlated with brain histological damage, in the present study, we tried to el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2006